http://www.zend.com/zend/tut/tutorial -wong3.php?print=1http://www.googl e.com.co/

Article Publication Date: March 4, 2003
Article URL: http://www.zend.com/zend/tut/tutorial-wong3.php
Author URL: n/a

Back to Article

Using PHP and XSL to Transform XML into Web
Content

March 4, 2003
By Benson Wong

| ntended Audience
Overview
L earning Objectives
Background Information
Definitions
Simplified DocBook
Prerequisites
How it works
- Creating the XML File
- The Simplified DocBook Structure
- Creating the XSL Template
- Fundamental XSL Elements
Putting it all together
- Automatically save the resultsto afile
- Returning the results as a string
- Providing and returning strings

The Script
About the Author

Intended Audience

Thistutorial isfor developers who have been looking for ways to use XML to manage web content, and
XSL to style and format that content. Y ou should be familiar with XML, and having some experience
with XSL would be helpful.

http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/ (1 of 11)26/03/2006 04:40:58 p.m.

http://www.zend.com/zend/tut/tutorial-wong3.php

http://www.zend.com/zend/tut/tutorial -wong3.php?print=1http://www.googl e.com.co/

Overview

Presenting content is one of the more time consuming and challenging tasks when building aweb site.
Thistutorial looks at taking an XML document and dynamically transforming it into HTML using PHP
and XSL. Asapractical example, thistutorial isavailable as XML aswell asthe XSL stylesheet which
transforms it into Zend.com's common tutorial layout.

The godl of thistutorial isto demonstrate how to use PHP and X SL to transform an XML document into
HTML.

Learning Objectives
In thistutorial you will learn:

. Anintroduction to XML, XSL's technologies and the Simplified DocBook DTD.
. How to use PHP and XSL to transform a XML document into HTML

Background Information

When you're working with alot of content coming from many different authors (like the Zend.com site

itself) you need an efficient way of managing and organizing the content. On the Web, documents often
need to be presented in avariety of different formats. XML has grown immensely in popularity for web
publishing, because it allows data to be stored in a structured format that is easily transformed into other
formats.

XSL was created as atool for transforming XML documents. The core of XSL is made up of three
technologies. XSL:T, XPath and XSL-FO. In this tutorial we will be looking only at using XSL:T
(templates) and X Path for generating HTML.

Definitions

. XML isametalanguage for defining markup languages. For more information on XML see
“What is XML?" at XML.com

. XSL (Extensible Stylesheet Language) is used for expressing Stylesheets for XML documents. It
Is made up of three parts, XSLT (transformations), Xpath, and XML-FO. An XSL documentisa
well formed XML document, that instructs an XSL processor how to transform an XML
document. See, What is XSL? for more information.

. XPath isalanguage for addressing and accessing parts of an XML document. It was designed to
be used by XSL:T. The XPath specification can be found at: http://www.w3.org/TR/xpath, and

tutorials can be found at: http://www.w3schools.com/xpath/

http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/ (2 of 11)26/03/2006 04:40:58 p.m.

http://www.xml.com/pub/a/98/10/guide1.html
http://www.w3.org/Style/XSL/WhatIsXSL.html
http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/

http://www.zend.com/zend/tut/tutorial -wong3.php?print=1http://www.googl e.com.co/

« XSL:T - XSL:T isoneof the main technologies of XSL. It stands for XSL Transformations and
Isalanguage for transforming XML documents into other formats. The XSL:T specification can
be found at http://www.w3.org/TR/xdlt and tutorials can be found at http://www.w3schools.com/

xdl/.

Simplified DocBook

Simplified DocBook is asmall subset of the origina DocBook XML DTD. While the full DocBook
DTD is perfectly adequate to structure content for the web, it can be over kill for short web articles.
Simplified DocBook addresses a more limited set of needs and provides a more specific set of elements.

Although Simplified DocBook is much smaller than the full DocBook DTD, it is still quite hefty in
itself. Simplified DocBook is composed of 106 elements, 525 entities, and 26 notations.

For more information on Simplified DocBook see: http://www.0asi s-open.org/docbook/xml/simple/.

Prerequisites

« PHP compiled with XML and XSL support
. A Simplified DocBook sourcefile
. An XSL Document

How it works

Creating the XML File

Writing articlesin amark up language is time consuming and can be quite a painful process. Having the
right tools can take some of the effort out of creating structured documents. For example: | wrote the
content of thistutorial in Open Office's Writer, and then structured it into XML with XMLEditor by
XMLmind.com, when it was ready to be published.

The advantage of using an XML tool to assist in the structuring is that the final document is less prone to
human error. Most XML tools provide faculties for automatically formatting and spacing the XML tags,
aswell as checking the validity of the document.

XML Editor can be found at: http://www.xmlmind.com/

The Simplified DocBook Structure

Although the Simplifed DocBook is only asmall part of DocBook, it can still be alittle overwhelming to
those unfamiliar with it. This section provides an introduction to the structure of Simplifed DocBook.

http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/ (3 of 11)26/03/2006 04:40:58 p.m.

http://www.w3.org/TR/xslt
http://www.w3schools.com/xsl/
http://www.w3schools.com/xsl/
http://www.oasis-open.org/docbook/xml/simple/
http://www.xmlmind.com/

http://www.zend.com/zend/tut/tutorial -wong3.php?print=1http://www.googl e.com.co/

<?xm version="1.0" encodi ng=" UTF-8"' ?>
<! DOCTYPE article PUBLIC "-//QASIS//DTD Sinplified DocBook XM
V4.1.2.5//EN
“http://ww. oasi s-open. or g/ docbook/ xm / si npl e/ 4. 1. 2. 5/ sdocbook. dt d" >
<article>

<title>A Short Exanple</title>

<section>
<title>Section #l</titl e>

<par a>A short exanple of a Sinplified DocBook file.</para>
</ section>
</[article>

In Simplified DocBook there are really only two main structuring elements, they are<ar ti cl e> and
<sect i on>. Other elements, such as<par a>, <exanpl e>,<i tem zedl i st >, etc. describe
different things within the document.

In Simplified DocBook the root element isalways<arti cl e>. Articles can be separated into sections,
and each sections can contain an unlimited number of sub-sections. The most common types of element
are titles, paragraphs, links, and lists. For afull listing of elements see Simplified DocBook: The
Definitive Guide.

Creating the XSL Template

The purpose of the XSL template we will be creating in this tutorial is to transform the Simplified
DocBook structured data into Zend.com's standard tutorial format. The standard layout for their tutorials
are:

. Titleof tutorial

. Dateof article

. Name of author

. Table of Contents
. Intended Audience
. OverviewlLearning
. Objectives

. Definitions

. Background

. Information

. Prerequisites

. How it works

. The Example Script

http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/ (4 of 11)26/03/2006 04:40:58 p.m.

http://www.docbook.org/tdg/simple/en/html/sdocbook.html
http://www.docbook.org/tdg/simple/en/html/sdocbook.html

http://www.zend.com/zend/tut/tutorial -wong3.php?print=1http://www.googl e.com.co/

Creating an XSL Style sheet to transform XML into HTML is alittle more difficult than creating the
XML datafile, because it requires knowledge of both the template language and X Path. Anything more
than introductory is outside the scope of this tutorial, but I'll try to give you a good idea of the role each
of these technologiesin the transformation.

Here is an example of an XSL Template to transform the minimal example above:

<xm version="1.0"7?>
<xsl : styl esheet
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf ornt' version="1.0" >

<xsl : out put nmethod="htm "/ >
<xsl:tenplate match="/">
<htm >
<head><titl| e><xsl:val ue-of select="title"/></titl e></head>
<body>
<xsl : apply-tenpl ates/ >
</ body>
</ htm >
</ xsl :tenpl at e>

<xsl:tenplate match="article/title">
<hl><xsl :val ue-of select="."/></hl>
</ xsl : tenpl at e>

<xsl:tenplate mat ch="secti on">
<xsl : apply-tenpl ates/ >
</ xsl : tenpl at e>

<l-- Formatting for JUST section titles -->
<xsl:tenplate match="section/title">
<h2><xsl : val ue-of sel ect="."/></h2>

</ xsl : tenpl at e>

<xsl:tenplate mat ch="para">
<P><xsl : appl y-tenpl at es/ ></ P>
</ xsl : tenpl at e>
</ xsl : styl esheet >

Asyou can see, a XSL template is ssimply awell formed XML document. The root element is<xsl :
styl esheet >, anditisusualy made up of <xsl : out put >, <xsl : t enpl at e>, <xsl:
appl y-tenpl at es> and <xsl : val ue- of >. There are afew more useful elements but those four

http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/ (5 of 11)26/03/2006 04:40:58 p.m.

http://www.zend.com/zend/tut/tutorial -wong3.php?print=1http://www.googl e.com.co/

are essential to providing the core functionality.

Fundamental XSL Elements

<xd:output>

This element defines the format of the output document. The
allowed methods are xml, html, text and name.

<xd:template>

An XSL Stylesheet consists of aset of templates. These
templates contain rules that are applied when a specific
matching node is found. Template element structure is quite
simple. At the most basic level they simply replace the element
they match with whatever is in the template. From the above
examplewhen <xsl : tenpl ate match="articl e/
title”>ismatched, the XML <titl| e>A Short

Exanpl e</titl e>turnsintoHTML as, <hl>A

Short Exanpl e</ hl>. To correctly match atemplate to a
single node or a set of nodes, XPath is used. In the above
example, <xsl : t enpl at e nmat ch=" par a” > matches any
<par a> element within the document. If the template element
read, <xsl : tenpl ate match="arti cl e/ para” > then
only <par a> elements directly beneath <ar ti cl e> will be
matched.

<xd:apply-
templates>

This element instructs the X SL processor to apply matching
templates to the current element, or the current element'’s child
nodes.

<xd:value-of>

This element extracts the value of a selected node.

There are afew other common and useful elements, such as<xsl : i f >and <xsl : choose> which
allows testing of conditions before applying rules, <xsl : f or - each> which allows looping through

elements, and <xsl : sor t > which allows sorting of output.

Putting it all together

Performing XSL transformations in PHP is very ssmple. The hardest part of using XSL in PHPis

creating the actual transformation file.

With XML and XSL documents, transformation using PHP consists of two steps. The first step isto
create the XSL:T processor with xl st _create();

() totransform the XML into HTML.

http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/ (6 of 11)26/03/2006 04:40:58 p.m.

the second is tousexl st _process

http://www.zend.com/zend/tut/tutorial -wong3.php?print=1http://www.googl e.com.co/

(my Tutorial.xml Create

HTML

HTML

(docBookToHtmlxs!

Thexslt _process() function handlesall the transformation work. There are three different ways of
using xsl t _process() . Theexamples below are from the PHP Manual.

Method 1: Automatically save the results to a file

<?php

/1l Allocate a new XSLT processor
$xh = xslt _create();

/'l Process the docunent
I f (xslt_process($xh, "sanple.xm', "sanple.xsl', "result.xm")) {

print "SUCCESS, sanple.xm was transforned by sanple.xsl into
result.xm",;

print ", result.xm has the foll ow ng contents\n
\n";

print "<pre>\n";

readfile('result.xm"');

print "</pre>\n";
}
el se {

print "Sorry, sanple.xm could not be transfornmed by sanpl e. xsl
I nto";

print " result.xm the reason is that
and the ";

print "error code is

xslt _error($xh)

xslt _errno($xh);

}
xslt _free($xh);

2>
Method 2: Returning the results as a string
(In most cases this method is more useful.)

<?php

http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/ (7 of 11)26/03/2006 04:40:58 p.m.

http://www.zend.com/manual/function.readfile.php

http://www.zend.com/zend/tut/tutori al -wong3.php?print=1http://www.googl e.com.co/

/'l Allocate a new XSLT processor
$xh = xslt _create();

/'l Process the docunent, returning the result into the $result

vari abl e

$result = xslt_process($xh, 'sample.xm ', 'sanple.xsl');

i f ($result) {
print "SUCCESS, sanple.xm was transforned by sanple.xsl into the

\$resul t”;
print

\ n
\ n";
print "<pre>\n";
print $result;
print "</pre>\n";

variable, the \$result variable has the followi ng contents

}

el se {
print "Sorry, sanple.xm could not be transfornmed by sanpl e. xsl
I nto";

print * the \$result variable the reason is that " xslt_error
($xh)
print " and the error code is " xslt_errno($xh);

}
xslt _free($xh);

?>

Method 3: Providing and returning strings

Thethird way of usingxslt _process() isto providethe XML and XSL documents as string
values, and have the function return a string value. This method is the most flexible as you can do some
pre-processing and post-processing to the XML or XSL documents before passing them to the processor.

<?php
/1 $xm and $xsl contain the XM. and XSL dat a

$argunents = array(
Y oxmto=> $xnd
"/ _xsl' => $xsl

)i

/1 Allocate a new XSLT processor
$xh = xslt _create();

http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/ (8 of 11)26/03/2006 04:40:58 p.m.

http://www.zend.com/zend/tut/tutorial -wong3.php?print=1http://www.googl e.com.co/

$result = xslt_process($xh, "arg:/_xm"', "arg:/
~xsl', NULL, S$argunents);
I f ($result) {
print "SUCCESS, sanple.xm was transforned by sanple.xsl into the
\$resul t”;
print " variable, the \$result variable has the follow ng contents
\ n
\n";
print "<pre>\n";
print $result;
print "</ pre>\n";
}
el se {
print "Sorry, sanple.xm could not be transfornmed by sanple. xsl
I nto";

print " the \$result variable the reason is that " . xslt_error
($xh)
print " and the error code is " . xslt_errno($xh);
}
xslt_free($xh);
?>
The Script

The following script demonstrates how post-processing can be applied after the XML document has
been transformed. After the document has been transformed, PHP looks for special delimitersin the
HTML, which designate different languages (ie. php), and run them through syntax highlighting.

<?php

function unhtmentities ($string)

{
$trans_tbl = get _html translation_table (HTM._ENTITIES);
$trans tbl = array flip ($trans_thl);
return strtr($string, $trans_thbl);

}

$xm = inplode('',file('docunment.xm"));

$xsl = inplode('',file(' sdochook. xsl"));

http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/ (9 of 11)26/03/2006 04:40:58 p.m.

http://www.zend.com/manual/function.strtr.php
http://www.zend.com/manual/function.implode.php
http://www.zend.com/manual/function.file.php
http://www.zend.com/manual/function.implode.php
http://www.zend.com/manual/function.file.php

http://www.zend.com/zend/tut/tutori al -wong3.php?print=1http://www.googl e.com.co/

$xh = xslt _create();

$out put = xslt _process($xh, "arg:xm ', "arg:xsl', NULL,
array(
xmt o o=> $xml
'xsl' => $xsl));

/* Find all the little parts that need to be highlighted.
the XSL transformation process puts in tags |like
<parse_php>, <parse_xsl>, <parse xm >... etc.

*/
$types = array('php'); // add nmore to this array as we find better
hi ghl i ghters

foreach ($types as $type) {
$oKey = "<parse_ $type>";
$cKey = "</ parse_S$type>";

$out put Array = expl ode($cKey, $out put) ;
unset ($out put Array[count ($out put Array)-1]); // drop the data at
t he end.
foreach ($outputArray as $data) {
$data = substr($dat a, st rpos($dat a, $oKey) +strl en($oKey)) ;
switch ($type) { // do the highlighting..
case 'php':
$dat aRepl ace
$dat aRepl ace
br eak;

unhtm entities($data);
hi ghl i ght _string($dat aRepl ace, true);

}

/'l replace the data in output..
$out put = str_repl ace(" $oKey$dat aScKey", $dat aRepl ace,
$out put) ;
}

}

echo $output; // print output
7>

About the Author

Benson Wong is a programmer and a system administrator. As the head of Tummy Tech's technology

http://www.zend.com/zend/tut/tutorial -wong3.php2print=1http://www.google.com.co/ (10 of 11)26/03/2006 04:40:58 p.m.

http://www.zend.com/manual/function.explode.php
http://www.zend.com/manual/function.count.php
http://www.zend.com/manual/function.substr.php
http://www.zend.com/manual/function.strpos.php
http://www.zend.com/manual/function.strlen.php
http://www.zend.com/manual/function.highlight-string.php
http://www.zend.com/manual/function.str-replace.php

http://www.zend.com/zend/tut/tutorial -wong3.php?print=1http://www.googl e.com.co/

department, Benson often has to be a Swiss army knife of technical knowledge. While most of histime
IS spent working with his programming team, Benson occasionally works with his network and system
administration team to develop new procedures for streamlining the technical requirements of their
clients. When not at the office, Benson is building the electronic music community beatmatch.com and
working on his martial artstraining.

Benson can be contacted at phpauthor@tummytech.com.

http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/ (11 of 11)26/03/2006 04:40:58 p.m.

mailto:phpauthor@tummytech.com

	zend.com
	http://www.zend.com/zend/tut/tutorial-wong3.php?print=1http://www.google.com.co/

